Docs

Research

Algorithmic pluralism: A structural approach towards equal opportunity

The idea of equal opportunity enjoys wide acceptance because of the freedom opportunities provide us to shape our lives. Many disagree deeply, however, about the meaning of equal opportunity, especially in algorithmic decision-making. A new theory of equal opportunity adopts a structural approach, describing how decisions can operate as bottlenecks or narrow places in the structure of opportunities. This viewpoint on discrimination highlights fundamental problems with equal opportunity and its achievement through formal fairness interventions, and instead advocates for a more pluralistic approach that prioritises opening up more opportunities for more people. We extend this theory of bottlenecks to data-driven decision-making, adapting it to cetre concerns about the extent to which algorithms can create severe bottlenecks in the opportunity structure. We recommend algorithmic pluralism: the prioritisation of alleviating severity in systems of algorithmic decision-making. Drawing on examples from education, healthcare, and criminal justice, we show how this structural approach helps reframe debates about equal opportunity in system design and regulation, and how algorithmic pluralism could help expand opportunities in a more positive-sum way.

Details

author(s)
Ashia Wilson
publication date
14 May 2023
source
Arxiv
related programme
MIT Jameel Clinic
Link to publication
External link ->

Generative AI in the era of 'alternative facts'

|

MIT Open Publishing Services

External data and AI are making each other more valuable

|

Harvard Business Review Press

Removing biases from molecular representations via information maximisation

|

Arxiv

Effective human-AI teams via learned natural language rules and onboarding

|

Arxiv

A deep dive into single-cell RNA sequencing foundation models

|

bioRxiv

Antibiotic identified by AI

|

Nature

LLM-grounded video diffusion models

|

Arxiv

Successful Development of a Natural Language Processing Algorithm for Pancreatic Neoplasms and Associated Histologic Features

|

Pancreas

Leveraging artificial intelligence in the fight against infectious diseases

|

Science

BioAutoMATED: An end-to-end automated machine learning tool for explanation and design of biological sequences

|

Cell Systems

Conformal language modeling

|

Arxiv

Comparison of mammography AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: An observational study

|

Radiological Society of North America

Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii

|

Nature

Algorithmic pluralism: A structural approach towards equal opportunity

|

Arxiv

Artificial intelligence and machine learning in lung cancer screening

|

Science Direct

Wide and deep neural networks achieve consistency for classification

|

PNAS

Autocatalytic base editing for RNA-responsive translational control

|

Nature

DiffDock: Diffusion steps, twists and turns for molecular docking

|

Arxiv

Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

|

Journal of Clinical Oncology

Sequential multi-dimensional self-supervised learning for clinical time series

|

Proceedings of Machine Learning Research

Queueing theory: Classical and modern methods

|

Dynamic Ideas

Toward robust mammography-based models for breast cancer risk

|

Science

The age of AI: And our human future

|

Little, Brown and Company

Uniform priors for data-efficient transfer

|

Arxiv

Machine learning under a modern optimisation lens

|

Dynamic Ideas

The marginal value of adaptive gradient methods in machine learning

|

Advances in Neural Information Processing Systems

Efficient graph-based image segmentation

|

International Journal of Computer Vision

We use cookies on our site.