Generative AI in the era of 'alternative facts'
|
MIT Open Publishing Services
Article
People are relying on AI agents to assist them with various tasks. The human must know when to rely on the agent, collaborate with the agent, or ignore its suggestions. In this work, we propose to learn rules grounded in data regions and described in natural language that illustrate how the human should collaborate with the AI. Our novel region discovery algorithm finds local regions in the data as neighbourhoods in an embedding space that corrects the human prior. Each region is then described using an iterative and contrastive procedure where a large language model describes the region. We then teach these rules to the human via an onboarding stage. Through user studies on object detection and question-answering tasks, we show that our method can lead to more accurate human-AI teams. We also evaluate our region discovery and description algorithms separately.
|
MIT Open Publishing Services
|
Harvard Business Review Press
|
Arxiv
|
Arxiv
|
bioRxiv
|
Nature
|
Arxiv
|
Pancreas
|
Science
|
Cell Systems
|
Arxiv
|
Radiological Society of North America
|
Nature
|
Arxiv
|
Science Direct
|
PNAS
|
Nature
|
Arxiv
|
Journal of Clinical Oncology
|
Proceedings of Machine Learning Research
|
Dynamic Ideas
|
Science
|
Little, Brown and Company
|
Arxiv
|
Dynamic Ideas
|
Advances in Neural Information Processing Systems
|
International Journal of Computer Vision