Docs

Article

Wide and deep neural networks achieve consistency for classification

While neural networks used in practice are often very deep, the benefit of depth is not well understood. Interestingly, it is known that increasing depth is often harmful for regression tasks. In this work, we show that, in contrast to regression, very deep networks can be Bayes optimal for classification. In particular, this research provides simple and explicit activation functions that can be used with standard neural network architectures to achieve consistency. This work provides fundamental understanding of classification using deep neural networks, and the research team envisions it will help guide the design of future neural network architectures.

Details

author(s)
Caroline Uhler
publication date
30 March 2023
source
PNAS
related programme
MIT Jameel Clinic
Link to publication
External link ->

Generative AI in the era of 'alternative facts'

|

MIT Open Publishing Services

External data and AI are making each other more valuable

|

Harvard Business Review Press

Removing biases from molecular representations via information maximisation

|

Arxiv

Effective human-AI teams via learned natural language rules and onboarding

|

Arxiv

A deep dive into single-cell RNA sequencing foundation models

|

bioRxiv

Antibiotic identified by AI

|

Nature

LLM-grounded video diffusion models

|

Arxiv

Successful Development of a Natural Language Processing Algorithm for Pancreatic Neoplasms and Associated Histologic Features

|

Pancreas

Leveraging artificial intelligence in the fight against infectious diseases

|

Science

BioAutoMATED: An end-to-end automated machine learning tool for explanation and design of biological sequences

|

Cell Systems

Conformal language modeling

|

Arxiv

Comparison of mammography AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: An observational study

|

Radiological Society of North America

Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii

|

Nature

Algorithmic pluralism: A structural approach towards equal opportunity

|

Arxiv

Artificial intelligence and machine learning in lung cancer screening

|

Science Direct

Wide and deep neural networks achieve consistency for classification

|

PNAS

Autocatalytic base editing for RNA-responsive translational control

|

Nature

DiffDock: Diffusion steps, twists and turns for molecular docking

|

Arxiv

Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

|

Journal of Clinical Oncology

Sequential multi-dimensional self-supervised learning for clinical time series

|

Proceedings of Machine Learning Research

Queueing theory: Classical and modern methods

|

Dynamic Ideas

Toward robust mammography-based models for breast cancer risk

|

Science

The age of AI: And our human future

|

Little, Brown and Company

Uniform priors for data-efficient transfer

|

Arxiv

Machine learning under a modern optimisation lens

|

Dynamic Ideas

The marginal value of adaptive gradient methods in machine learning

|

Advances in Neural Information Processing Systems

Efficient graph-based image segmentation

|

International Journal of Computer Vision

We use cookies on our site.